
8 Mistakes Companies Make
When Transitioning to CI/CD

www.testim.io

White paper by: Federico Toledo, Ph.D., Lucia Lavagna, & Oren Rubin

www.testim.io02

CI/CD, BDD, ATDD, DevOps, Agile, Continuous Testing—however you want to do it,

companies today are all striving for faster release cycles and higher quality software.

While helping our clients over the years, the teams behind Testim.io and Abstracta

have witnessed several successful transitions to Continuous Integration and

Continuous Delivery (CI/CD). It’s important to remember that change requires not

only a technical shift, but a cultural one at the same time in order to create a lasting

impact. We’ve identified eight common mistakes that teams make during the

transition that you can avoid while embarking on your own transition related to

team culture, processes, expectation setting, and more

Introduction

www.testim.io03

More often than not, the driver of the shift to CI/CD is a bottom-up effort, meaning,

seldom do leaders impress upon their teams the need to adopt these new practices,

but rather, testers and developers make the case for it. The problem when

implementing it bottom-up is that there comes a point where the team must obtain

executive buy-in to move forward. Otherwise, the project may gain some

temporary momentum, but it's unlikely to be sustainable over time. While partially

making the shift is better than nothing at all, it's ideal to provide visibility into the

team's success by management in order to receive its support and to spread it to

other teams throughout the organization.

Mistake 1: Lacking
Proper Management Buy In

A Bottom-Up Endeavor

www.testim.io04

Especially when working inside a fairly rigid organization, it's very rare to see the

shift to CI/CD occurring top-down. In these cases, one effective strategy is for the

technical team to align itself and sync up in terms of implementing continuous

integration, adopting its practices in the search of adopting a DevOps culture, and

agreeing on some of the key benefits that they will present to management that

may be produced as a result of the changes. For example, one potential benefit may

be finding issues earlier in a process, thus being able to identify and eliminate risks

much sooner and at a lower cost.

It’s important to do frequent reviews that allow the team to have better visibility of

these issues in an earlier stage. It’s also practical to properly implement a

development strategy that allows the team to have a clear process and trackable

metrics for improving it over time.

The shift to CI/CD is usually triggered from the bottom up, but at the end of the day,

it's a transformation that requires management buy-in because it's about skill set,

processes, and several areas to which management needs to allocate the proper

time, resources, and attention.

When it comes to a bottom-up implementation, the most vital

factor for a team’s successful shift to CI/CD is its ability to

showcase the value of the adoption to management.

Increasing the Likelihood of Management Buy-In

www.testim.io05

Mistake 2: Underestimating the
Importance of the Necessary
Cultural and Mindset Shifts

The Responsibility for Quality

Testing should be something that everyone on the team is doing all the
time, as a part of all their activities.

In the original illustration by Dan Ashby below, one can see that there is no

specific time for testing in DevOps. Meaning, testing should be a fundamental

part of every single task, making it a continuous activity. In CI/CD, it’s a part of

everything that development teams do and may be part of the mindset shift

that whatever phase of development one is currently in, there must be some

sort of testing included as an integral part of it.

OPSDEV

Plan

Build

Merge

Monitor

Code

Operate

Branch

Deploy

Release

www.testim.io06

When it comes to software quality, all team members share ownership of it. For

instance, the developers can write unit tests and also write the code with

testability in mind, helping to mitigate risk from the start.

One simple way to help reflect the change in the view of testing is to change the

testers’ titles from QA to software tester or better yet, quality engineer. While this

change may seem surface-level, too simple, or even silly, if someone has the title

of “software quality assurance,” it conveys the wrong message about who has the

responsibility to ensure the product quality (which in Agile, CI/CD and DevOps is

everyone).

Another fundamental aspect is to be aligned in terms of quality, what quality

means for the team, organization, stakeholders, and for each team member.

Culture is key, and it needs to be conducive to a high level of collaboration and

communication. In DevOps, the most important element is the constant giving

and receiving of feedback. In our experience, you cannot claim to have a culture

of DevOps or have CI/CD in place if you aren’t holding retrospective meetings.

Most likely if a team is trying to adopt CI/CD, then it is adopting an agile approach

because it is not something that teams consider when following a more traditional

approach such as waterfall. In Agile, particularly in Scrum, retrospective meetings

Continuous Feedback Culture

www.testim.io07

For a successful shift to CI/CD to occur, it’s important for the team to adopt an

agile mindset and culture, starting with a shared responsibility for software quality,

fomenting a culture of continuous feedback firstly by conducting retro meetings,

as well as having a transparent and universally agreed upon “Definition of Done.”

Here, the question of the matter is when there is an item in the team’s Trello

or Kanban Board in the “Done” column, what does everyone understand was

executed for that item?

Does everyone have a common understanding of the team’s “Definition of

Done” (DoD)? Can it be assumed that the item was tested and how it was

tested? Can it be assumed that someone reviewed the code? What else?

The DoD is a very powerful tool to share this understanding about the quality

standards of what the team produces and how. It provides visibility into the

process, even including how to implement CI/CD, as well as fosters trust.

This is part of the mindset shift that must take place. If the DoD is unclear, the

team must define it together and make it visible and accessible to everyone.

The Definition of Done

are fundamental for getting teams accustomed to giving and understanding

feedback, allowing for continuous improvement.

The first step for adopting an agile methodology is to get into the habit of

holding retrospectives, aka, “retros.” In the first retro, one of the action items is

to set up recurring retro meetings every two weeks. In that way, the practice of

exchanging feedback becomes continuous.

www.testim.io08

Mistake 3: Not Setting
Clear, Defined, and Realistic Goals

What to Aim For?

For the success of any type of transformation to occur, it should be measured and

comprise tangible goals. When defining goals, it's very important to think about

where the organization stands. If the team is currently releasing once a month, a

realistic goal may be to cut down that time to just two weeks. A different, yet

respectable goal for the same scenario would be to continue to release once a

month, but to do so with greater quality and less risk.

While it may not be quite possible to copy a company like Amazon and release

every 12 seconds, teams can consider where they are today, and at a very minimum,

think about assessing their operating reality.

In thinking of their goals, teams need not to only think about what's realistic, (What

is truly achievable?) but also what will make the most sense in the time being. All of

the goals that are decided upon should be adjusted to the team’s current context,

for example, considering how frequently users need new versions, or new

adjustments or fixes.

For some teams, it may not make sense to release more than three times in a year,

and that's fine. In this case, it would be a mistake to over-engineer processes if

they do not produce any added value.

Always keep in mind what is going to make the most sense. Will Continuous

Delivery or just Continuous Integration be adequate? In the case of highly regulated

organizations like banks or healthcare industry companies, CI alone may be

sufficient, without the need for reaching Continuous Delivery.

In our opinion, Continuous Integration should be a must for every team, as it

tends to become the golden standard for any team that experiences it.

Unlike CI, CD fundamentally changes the way companies deliver software as it

impacts users, the business, and operations. Normally, teams should aim to

implement CI as a starting point. Once implemented, it is possible to think about

how to start releasing faster, and if doing so is ideal. Try it for a couple of sprints,

measure it and evaluate how well it’s working in order to make a long-term plan.

Determine whether your team will benefit from achieving Continuous Delivery or if

Continuous Integration on its own is sufficient for your needs.

www.testim.io09

Mistake 4: Failing to Make
a Scheduled Plan with Deadlines
The Blueprint

It can be really difficult to make a plan for something that implies a fair amount of

research and the adoption of various tools. Before you make a plan, understand

what the CI process entails, as illustrated in the following graphic:

In CI, there is a separate server which fetches the new changes from the source

control server which makes a new build and tests it for each change in the code.

This is done frequently, at least once a day, if not more.

When teams prepare the build automatically, they run the different tests that

they’ve prepared and everyone receives a notification if anything has gone wrong

or if everything is okay with the new build. This is part of the continuous

feedback element.

This is the blueprint for the first step to undertake when making the transition

In planning the transition, your team may ask, “What is a minimum viable product

(MVP) for this change? What makes sense and adds value to the delivery pipeline?”

An initial goal could be Continuous Integration, starting with the automation of the

build, some unique tests, and after that, the team can evaluate and plan the next

MVP, adding some other automation to the process. Once CI is in place, the team

can aim for Continuous Delivery.

Create MVPs

Manager

6 Notify Success or Failure
Check in Changes 1

Fetch Changes 2Continuous Integration Server

Continuous Integration Server

Developer 1 Developer 2

3Test5Build

4fail of succeed

www.testim.io10

It is important to note that the process itself must be tested in order for it to be

trusted. Testers need to trust the delivery process and the automation that is

involved there, since therein lies great risk. The second step may be to define a

plan for testing the process.

There are countless aspects to consider when defining a pipeline. In this stage,

testers can add a lot of value and contribute ideas about which verifications to add

to the testing process. Also make sure to ask, “Who is going to prepare each test?”

and, “In which environment will we run those tests?”

A good process to have in place is one in which each developer runs automated

tests at different levels, (like at the API or UI level) in their own branch and after

that, they ask for a merge request and someone else then performs a code review.

After that, all the tests could be run in a fresh environment generated for the main

branch. There the team can also include performance verifications or security

checks or use tools to find issues related to accessibility, among other things.

Follow an Agile approach for planning the transition, creating a series of “MVPs”

organized in different sprints, adding different levels of automation to the

delivery pipeline in each.

When it comes to timing, it greatly depends on the technologies or the tools to be

used and also the skills of those on the team.

Plan for Managing Costs

Another important consideration is cost when you're building the CI process. To

manage this, some teams segment their tests into buckets, essentially running

different buckets at different stages in the development process. It’s possible to

run an entire regression suite on every commit or every merge but, unless the

team is counting on a highly robust environment, it will take some time to get

feedback to the developers. Many teams set out to have a small subset inside a

branch and once they merge the master, they have a sanity suite which is robust

enough but still such that the developer can get feedback in a few minutes and

then once a night, run a full regression. Testim.io follows this practice itself to

tradeoff the cost of infrastructure with agility.

Know what the CI/CD process will entail and create a plan for the transition

involving a series of MVPs for each stage while keeping in mind how to manage

costs. The timing will depend on each team and the tools they choose to use.

www.testim.io11

Mistake 5: Confusion Around the Role
Changes and Responsibility Shifts

Each transition plan includes different people with different roles. Teams must

manage the plethora of changes to be made and the shifting responsibilities. First,

figure out what are the processes, people, tools and technology needed to reach

your goals. Determine what will stay its course, what will be modified or

eliminated, and what should be added.

Not everything needs to have a complete overhaul.

For teams that are used to working in Agile, there will be fewer changes to the

roles and responsibilities. Teams not yet accustomed to being agile will first have

to adapt to the changes that come with it. To reiterate, the main mindset that

needs to change to be agile is that quality is the responsibility of the whole team.

Otherwise, you will have a test team which will work as a quality gate with an

inherent conflict of interest with the development team (developers being the

builders while testers being the “destroyers” of their work). This conflict of interest

between developers and testers was something that was made on purpose for

traditional development environments to function, yet it’s important to break out

of this mindset in order to transition to CI/CD.

Essential Technology

Regarding technology, it’s essential to use a git-based repository. It’s not necessary

to automate the process from the changes in the repo to the deploy, including all

the automatic checks in the middle, the building process, and so on.

Everyone on the team will be responsible for understanding the process.

Continuous Delivery is also about getting feedback from users, not only from the

tools with the automatic checks. For example, someone must be responsible for

checking the logs to see if, for example, the newly released version created any

negative impact to the system’s performance or functionality. It’s important to be

familiar with application performance monitoring (APM) tools to see if there is any

change in the way the resources of the service are being used, or if there is a new

exception appearing in the log or a new javascript error. There are several well-

designed tools on the market today to help process this information.

A testament to the shift-left movement gaining traction and developers being

also responsible for quality is the fact that 30% of Testim.io users are actually

developers, not testers

www.testim.io12

Mistake 6: Misunderstanding the
Technical Requirements

Assessing Your Team’s Maturity

How do you determine the technical requirements and the tools to make the

shift to CI/CD?

An important first step is understanding where the team is today. Based on that,

it’s possible to plan what needs to change and what or who needs to be involved.

The plan should also be linked, of course, to the team’s goals and expectations.

From experiences working with several clients, Abstracta has identified three

pillars that teams must assess if they want to make improvements: people,

technology, and processes (and how they interact together).

In doing this, software development teams assess their maturity, and what we will

place the most emphasis on, their testing team and testing maturity, which is a a

main driver of CI/CD and DevOps.

Abstracta has established a testing maturity model, wherein there are three main

levels of testing maturity based on three basic characteristics; risks, quality, and

costs. The model contains everything deemed necessary in order to lay the

foundations for efficient testing, which is the minimum level of testing maturity in

which it is possible to achieve CI/CD.

Using this chart is a great way to trace all the activities to carry out and to define

some preconditions for making the transition. It allows for a broad overview of a

team’s technology landscape and it helps to determine which activities to engage in.

You can identify your testing maturity level using the chart below or take this

online software testing maturity assessment.

111111111111111

111111111111111111111111

https://abstracta.us/insights/resource/Our_Maturity_Model_Abstracta-4.pdf
https://abstracta.us/assessment/

FUNCTIONAL
TESTS

AUTOMATED
TESTS

PERFORMANCE
TESTS

SECURITY
TESTS

USABILITY
TESTS

SOURCE
CODE

Source code versioning

- Ul automation
- Unit testing with minimal coverageUnit testing API automated tests

Usability testing

BASIC TESTING EFFICIENT TESTING CONTINUOUS TESTING

Aware Of Risks
Measured Quality Measured Costs

ENVIRONMENT/
INFRASTRUCTURE

INCIDENTS/
BUGS

TEST
MANAGEMENT

Controlled Risks
Controlled Quality Controlled Costs

Reduced Risks
Optimized Quality Optimized Costs

MANDATORY RECOMMENDED OPTIONAL

Functionality inventory (backlog)
Traceability between

- TCs and features TCs, checklists, ET sessions

Basic test management
Test planning with development

Basic testing of ccess control policies

Separted testing/ dev environments
Few devices/ browsers are covered

Bug tracking

Unit, API and Ul automated
test running continuously

Continuous Integration /
Continuous Delivery

OWASP TOP 10 Pentesting

- Test design techniques
- Test are prioritzed

- Testing before development
- Impact analysis

Defects Causal Analysis

User testing

Test data management
Full devices / browsers coverage

Virtual servers

- Test environment management
- Containers

 - Service virtualization

Traceability between features, issues and code

Performance tests running continuously

Accessibility testing

Long-term code coverage strategy

Agile management Testing and development
as one unified team

Client-side performance tests System
performance testing (before go-live)
Reactive monitoring in production

Code quality control

- Unit performance tests (during development)
- Proactive monitoring in production

Automated security checks

www.testim.io13

www.testim.io14

The Levels of Testing Maturity

Basic Testing

Efficient Testing

Continuous Testing

The first level of maturity in this model is “Basic Testing.” At this level, there are

different activities that need to happen in terms of the source code. For example,

it’s necessary to have versioning as well as a separate environment from which the

code can be tested. Bug tracking should be in place as well as test management.

Teams at this level know what it is they are testing and have achieved traceability

between test cases and product features. In terms of automation, they may have at

least some unit testing in place and test at the API level. This level of maturity may

also comprise some performance and security testing.

One level ahead of Basic Testing, “Efficient Testing” is characterized by the

achievement of a more efficient way of testing where various aspects like risk are

not only identified, but controlled. At this level, teams begin to have more

coverage in terms of testing, with more data management, and they may even

have separate environments added. Some optional areas of quality here include

defect causal analysis, greater prioritization in testing, and regarding automation,

more end-to-end testing.

When a team reaches “Continuous Testing,” Continuous Integration is already set in

motion, and maybe even Continuous Deployment, depending on the team’s needs.

Teams at this level have a set of unit, API, and automated tests that are running

continuously, generating the highly sought after continuous feedback loop.

Performance tests are also continuous, and hopefully there are also security and

accessibility checks included in the pipeline. At this level, risks are reduced and

quality and costs are optimized.

Using this testing maturity scheme, it’s possible to understand what are the

necessary technical requirements and preconditions in order to advance to CI/CD,

as continuous testing is a primary enabler of CI/CD.

www.testim.io15

Mistake 7: Forgoing an
Effective Test Automation Strategy

One of the mistakes that teams often make regarding test automation is

wanting to automate everything and have every test running ALL the time. This

might not be necessary, so it's important to define a clear strategy for how to

approach automation.

The Test Automation Pyramid

Unit Tests

One guideline to follow is the Test Automation Pyramid by Michael Cohen,

which illustrates the amount of automated tests to aim for across different

test levels:

At the base of the pyramid lie unit tests. The aim is to devote more effort to this

kind of tests because they are faster to execute, easier to maintain and manage,

and they enable teams to detect errors when they are still premature, leading to

a higher ROI. Developers should be in charge of writing these whenever they’re

writing a new feature, cutting short the lifespan of any bugs that may appear.

More Time
& Effort

Manual &
Exploratory

Testing

Ideal Test
Automation Pyramid

Unit Tests

Acceptance/integration/
Component Tests

Automated
GUI Tests

Higher ROI

www.testim.io16

Moving to the next level is the middle of the pyramid. Considerable efforts should

be directed here, which is automation at the service level. When it comes to API

testing, only the most critical workflows should be automated, in order to test the

logic before reaching the UI. At this level, the tests are slower than unit tests, but are

still quicker than UI tests, so they will help to provide good feedback on how

different services are working.

Testim.io has helped several developers and testers to instill the habit of running

automated functional and end-to-end tests because it uses artificial intelligence to

keep the tests maintainable.

Instead of boiling the ocean with your automation strategy, take a risk-based

approach, focusing on the areas that will result in the highest return on

investment (ROI).

For example, for an e-commerce business, a critical aspect to test is the online

check-out process, as that user experience will have a direct impact on the business

and its bottom line. For a search engine, the search functionality would be the main

focus for testing

Larger organizations are putting more focus (once they have good baseline) on the

visual aspect of their applications. Today, much more attention is placed on the user

experience and the look and feel of applications. There’s a multitude of tools to add

different tests or checks to the pipeline, whether they be visual, performance,

security, or accessibility checks. For all of these checks, it’s important to take a risk-

based approach because teams can get carried away and there is a considerable

amount of preparation and maintenance to be wary of. Pay attention to what is truly

adding value to the pipeline and helping to avoid risks.

Test automation is a crucial aspect of CI/CD. To know what to automate and where,

it is a good practice to follow the approach illustrated by Michael Cohen’s

Automation Pyramid and prioritize the tests to be automated using

a risk-based approach.

The top of the pyramid represents having a few automated tests at the UI level.

These are the slowest and most difficult tests to maintain, but they serve the

purpose of validating end-to-end functionality. These tests replicate how a user

would actually use the system. When a team reaches this point and establishes a

good foundation for its automation strategy, there will still be the need for manual

and exploratory testing.

Cohen’s pyramid is mostly focused on functional testing, but regarding

performance, it is also recommended to include unit performance checks

to the pipeline.

Acceptance, Integration, and Component Tests

But, don’t forget—It’s also important to dedicate time and effort to maintaining
the automated tests so that their results remain reliable.

Focus on the user scenarios that are critical to your business and those that are
critical to the user experience.

Take a Risk-Based Approach

Automated GUI Tests

11111111111111111
11111111111111
111
123456789111

https://blog.testim.io/maintenance-of-tests-made-easy-with-testim-io/
https://blog.testim.io/maintenance-of-tests-made-easy-with-testim-io/
https://blog.testim.io/maintenance-of-tests-made-easy-with-testim-io/

www.testim.io17

Mistake 8: Failing to Set the
Right KPIs to Measure Success

How do you know if your transition is going well? How do you know if your

Continuous Integration or Continuous Delivery environments are producing the

expected results?

What we have seen at Testim.io and Abstracta, particularly in the CI/CD context,

is that teams should pay attention to different metrics associated with the

delivery pipeline. One of the most important questions related to CI/CD is, “How

much time does it take for a change to reach the user?” With that information,

teams can start thinking about how they can reduce this time.

There are some useful metrics related to the lean methodology which are lead

time and cycle times. These are related to how much time is needed to go from

an idea to the delivery of the implementation of that idea to the users.

Other metrics that are always paramount, regardless of whether a team is

working in CI/CD or not, are how well the users rate the software and how

happy the team is with itself and the way it works. Those

are two fundamental key performance indicators (KPIs) as the basis of any

company is a group of people whose mission is to deliver value to customers.

If a team wants to utilize a dashboard, it can turn to its CI engine (like Jenkins)

which may provide more information related to the technical aspects of the

Continuous Integration and Continuous Delivery pipeline, like the tests that are

passing or failing, response times, code coverage, etc.

The important thing that teams and leaders should always be mindful of is how

much time it takes to deliver value. This is the measure of success for

implementing CI/CD.

Abstracta is a world leader in software testing and quality engineering

focused on improving the performance of software applications,

implementing agile testing, and setting up automation stacks

in CI/CD environments.

With offices in Latin America and Silicon Valley, Abstracta has expertise

working not only with leading-edge proprietary and open source

testing tools, but developing specialized tools for the financial, retail

and technology sectors including companies such as BBVA Financial

Group, CA Technologies, and Shutterfly.

Abstracta was recently named the fifth best software testing company

for 2019 by Hacker Noon and is a top rated outsourcing company

according to Clutch.co.

About Abstracta

https://twitter.com/

epsilon11?lang=en

https://

twitter.com

/epsilon11?

lang=en

l i n k

www.testim.io18

https://twitter.com/epsilon11?lang=en
https://twitter.com/epsilon11?lang=en
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/

Software is changing the world every day. Its behind everything we do;

powering back office systems and websites, to robotics and mobile

apps used across a wide range of devices. We want to help the people

developing the powerful applications that are improving

everyone’s lives.

We created Testim because automated testing is still difficult. Being

developers for the last 20 years, we recognized we spend time and

energy maintaining our automated testing environments, and are still

anxious with how a simple bug fix might break another part of

our application.

Testim is software that’s easy and works the way you want it to,

supporting Agile transformations and shift left.

Our AI based software testing platform uses machine learning for the

authoring, execution and maintenance of automated test suites to

support your organizations user experience for every release..

About Testim

https://twitter.com/

epsilon11?lang=en

https://

twitter.com

/epsilon11?

lang=en

l i n k

www.testim.io19

https://twitter.com/epsilon11?lang=en
https://twitter.com/epsilon11?lang=en
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/
http://www.rajsubra.com/my-youtube-channel/

About the Authors

l i n k

www.testim.io20

Federico Toledo, Ph.D.

Founder & COO, Abstracta

Oren Rubin

Founder and CEO, Tesim.io

Lucia Lavagna

Chief Sales Officer, Abstracta

Federico Toledo is the co-founder and director of

the software testing company Abstracta, and holds

a PhD in Computer Science from UCLM, Spain.

With over 10 years of experience in Quality

Engineering, he's helped hundreds of companies

to successfully improve their application

performance. He’s dedicated to testing education

as a professor, author and public speaker. He is

also a co-organizer of TestingUY, the largest

testing conference in Latin America

Oren has over 20 years of experience in the

software industry, building mostly test-related

products for developers at IBM, Wix, Cadence,

Applitools, and Testim.io. In addition to being a

busy entrepreneur, Oren is a community activist

and and the co-organizer of the Selenium-Israel

meetup and the Israeli Google Developer Group

meetup. He has taught at Technion University, and

mentored at the Google Launchpad Accelerator.

Lucia Lavagna is a performance engineer turned

Chief Sales Officer at Abstracta, with over three

years of experience overseeing client relations

with companies like Benefit Cosmetics, The

RealReal, and Singularity University, helping them

to implement Agile testing and set up test

automation stacks in CI/CD environments. As a

performance engineer, she helped dozens of

companies worldwide to improve system

performance and reliability.

ht
tp
s:
//
t
w
itt
er
.c
o
m
/
s
h
e
x
m
a
n

h
tt
p
s:
//
w
w
w
.li
n
k
e
d
i
n
.c
o
m
/
i
n
/
r
u
b
i
n
o
r
e
n
/

ht
tp
s:
//
w
w
w
.li
n
k
e
di
n.
c
o
m
/
in
/
fe
d
er
ic
ot
ol
e
d
o
/

htt
ps:
//
twi
tte
r.c
o
m/
flt
ole
do

h
tt
p
s:
//
w
w
w
.li
n
k
e
di
n.
c
o
m
/
in
/
lu
c
%
C
3
%
A
D
a
-
la
v
a
g
n
a
-
6
8
3
6
7
4
1
0
9
/

http://www.rajsubra.com/my-youtube-channel/
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://twitter.com/shexman
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/rubinoren/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://www.linkedin.com/in/federicotoledo/
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://twitter.com/fltoledo
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/
https://www.linkedin.com/in/luc%C3%ADa-lavagna-683674109/

Thank You!

www.testim.io

For more information contact us at

or

hello@abstracta.us

info@testim.io

http
s://
twitt
er.c
om/
epsil
on1
1?
lang
=en

http
s://
twitt
er.c
om/
epsil
on1
1?
lang
=en

http
s://
twitt
er.c
om/
epsil
on1
1?
lang
=en

https://twitter.com/
epsilon11?lang=en

https://twitter.com/
epsilon11?lang=en

https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.linkedin.com/company/testim-io
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.facebook.com/testimdotio
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://www.youtube.com/channel/UCHgWDEXtFqMfWk9k5ttmoaw
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io
https://twitter.com/testim_io

	00 - 8 mistakes Transcript main
	01 - 8 mistakes Introduction
	02 - 8 mistakes 03
	03 - 8 mistakes 1-2
	04 - 8 mistakes 2
	05 - 8 mistakes 2-2
	06 - 8 mistakes 2-3
	07 - 8 mistakes 3
	08 - 8 mistakes 4
	09 - 8 mistakes 4-1
	10 - 8 mistakes 5
	11 - 8 mistakes 6
	12 - 8 mistakes 6-2
	13 - 8 mistakes 6-3
	14 - 8 mistakes 7
	15 - 8 mistakes 7-2
	15 - 8 mistakes 8
	16 - about
	17 - About Testim
	18 - about 2
	19 thank

